Aggregated cross-validation and its efficient application to Gaussian mixture optimization

نویسندگان

  • Takahiro Shinozaki
  • Sadaoki Furui
  • Tatsuya Kawahara
چکیده

We have previously proposed a cross-validation (CV) based Gaussian mixture optimization method that efficiently optimizes the model structure based on CV likelihood. In this study, we propose aggregated cross-validation (AgCV) that introduces a bagging-like approach in the CV framework to reinforce the model selection ability. While a single model is used in CV to evaluate a held-out subset, AgCV uses multiple models to reduce the variance in the score estimation. By integrating AgCV instead of CV in the Gaussian mixture optimization algorithm, an AgCV likelihood based Gaussian mixture optimization algorithm is obtained. The algorithm works efficiently by using sufficient statistics and can be applied to large models such as Gaussian mixture HMM. The proposed algorithm is evaluated by speech recognition experiments on oral presentations and it is shown that lower word error rates are obtained by the AgCV optimization method when compared to CV and MDL based methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gaussian mixture optimization for HMM based on efficient cross-validation

A Gaussian mixture optimization method is explored using cross-validation likelihood as an objective function instead of the conventional training set likelihood. The optimization is based on reducing the number of mixture components by selecting and merging a pair of Gaussians step by step base on the objective function so as to remove redundant components and improve the generality of the mod...

متن کامل

Application of Clayton Copula in Portfolio Optimization and its Comparison with Markowitz Mean-Variance Analysis

With the aim of portfolio optimization and management, this article utilizes the Clayton-copula along with copula theory measures. Portfolio-Optimization is one of the activities in investment funds. Thus, it is essential to select an appropriate optimization method. In modern financial analyses, there is growing evidence indicating the distribution of proceeds of financial properties is not cu...

متن کامل

Using Aggregation to Improve the Performance of Mixture Gaussian Acoustic Models1

This paper investigates the use of aggregation as a means of improving the performance and robustness of mixture Gaussian models. This technique produces models that are more accurate and more robust to different test sets than traditional cross-validation using a development set. A theoretical justification for this technique is presented along with experimental results in phonetic classificat...

متن کامل

Using aggregation to improve the performance of mixture Gaussian acoustic models

This paper investigates the use of aggregation as a means of improving the performance and robustness of mixture Gaussian models. This technique produces models that are more accurate and more robust to different test sets than traditional cross-validation using a development set. A theoretical justification for this technique is presented along with experimental results in phonetic classificat...

متن کامل

An Evaluation of Algorithms for Single-Echo Biosonar Target Classification

A recent neuro-spiking coding scheme for feature extraction from biosonar echoes of various plants is examined with a variety of stochastic classifiers. Feature vectors derived are employed in well-known stochastic classifiers, including nearest-neighborhood, single Gaussian and a Gaussian mixture with EM optimization. Classifiers’ performances are evaluated by using cross-validation and bootst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008